

Residential Electricity Consumption in South Africa

Virtual Stakeholder Workshop

22 June 2021

2-4 PM

Presenters

Alison Hughes Senior Researcher ESRG, UCT

Richard Larmour Researcher AMES, UCT

Agenda

Session 1: Overview & key findings

- Introduction
- Project overview
- Key findings
- The future

Session 2: Research methodology

- REC 2020 Household survey
- Household calibration
- National calibration
- LEAP model development

Introduction

Introduction: Residential energy consumption

Globally

- 20% of global energy is consumed in the sector
- Energy efficiency potential largely untapped
- Benefits of EE well published by IEA

South Africa

- Sector comprised of 16.9 million households (2016)
- About 86% electrified
- Consumes about 17% of grid electricity (HW)
- Represents about 35% of peak demand
- Household electricity spend varies greatly with income
- Up to 50% of households may be in energy poverty
- The sector very heterogeneous & dynamic
- The sector remains understudied
- Better understanding of the sector required to meet policy objectives

Acronyms

NRCS national regulator for compulsory specifications

S&L – Standards & Labelling

MEPS – Minimum Energy Performance Standards

NRCS – National Regulator for Compulsory Specifications.

Regulatory process

Residential Energy Efficiency in South Africa

Project objectives

- Determine impacts of S&L programme 2015 2020
- Estimate potential savings to 2040 under various scenarios
- Review Post-2015 NEES residential targets

LEAP model refinements

- Disaggregate households by income group
- Refine appliance kWh estimates based on real utilisation patterns
- Determine the stock vintage profile
- Refine appliance survival profiles
- Calibrate the model to residential consumption at the national level (required broadening of end use categories)

Income group definition

Gross Household Monthly Income (2020 Rands)

Low	Middle	High
< R5,000	R5,001 - R20,000	> R20,001

Reference case

Actual case

• Replaced stock @ improved intensities

• Replaced stock @ 2015 intensities

EXCLUDING S&L

INCLUDING S&L

Moderate MEPS

- 1-step nudge to market in 2025
- Prevent regress / backslide | Equal best of the market

Extensive MEPS

- 2-step changes in 2025 and 2030 (Ambitious)
- Beat the market | Increase the basket of appliances

Behavioural

- Pot lids | Geyser switching | Kettle overfilling
- Additive with MEPS impacts

Reference case

) 2021

Scenario development: kWh intensity example (Extensive MEPS, High

Survey insights

Survey insights 1: Demographics

Major metro	Number of completed questionnaires	1400 <u>s</u> 1200
City of Cape Town Metropolitan Municipality	142	800
City of Ekurhuleni Metropolitan Municipality	85	5 600 J
City of Johannesburg Metropolitan Municipality	147	
City of Tshwane Metropolitan Municipality	135	0 Cluster house Flat House or Informal Other Room or flat in
eThekwini Metropolitan Municipality	120	or Semi-detached dwelling yard Townhouse house
Nelson Mandela Bay Metropolitan Municipality	43	■ Low ■ Middle ■ High

Survey insights 2: Washing machine and dishwasher utilisation

Survey insights 3: Cooking appliances & frequency of use

Survey insights 4: Appliance purchasing habits awareness of S&L

Key findings

Key findings: Electricity consumption per income group (2015-2040)

End use share of consumption: Reference case (2015-2040)

S&L programme scenarios (2015-2040)

S&L programme impacts (2015-2020)

S&L programme impacts (2020)

Projected S&L impacts: Moderate & Extensive MEPS Scenarios (2021-2040)

Moderate MEPS

Extensive MEPS

Behavioural imapcts (2025-2040)

Impacts of increased SWH & Heat Pump adoption

Key findings: General

- LEAP and stock based analysis provide a good, easy to use, platform for analysing impacts of demand side policy
- Model disaggregation into income groups allows
 - Analysis of policy impact on energy poverty
 - Better representation of the impact of changes to household income on electricity demand forecasts
 - However the data for this disaggregation requires attention

Key findings: S&L programme assessment

- Meaningful savings achieved from 2015 2020
- Programme will continue to realise savings
- Refrigeration achieves the highest savings in the low income group
- Water heating achieves the highest savings in the high income group
- The S&L programme results in a drop in energy intensity of 4.3% in the low income group in the 2020 Reference case compared to the Ex-S&L scenario
- Similar reductions in energy intensity are seen in the middle and high income groups.
 - Energy intensity of supplying energy services in middle income households drops by 3.8% and in high income households it drops by 4.2%.
 - This amounts to an overall reduction in energy intensity of 4.1% in 2020 in the Reference case compared to the Ex-S&L scenario.

Key findings: Assessment of Post-2015 NEES targets

- Assessment relates only to targeted of 33% reduction in average specific energy consumption of new household appliances compared to the 2015 baseline
- In both the Moderate and Extensive MEPS scenarios the appliances most likely to meet or exceed a 33% efficiency improvement are those that were targeted by the S&L programme.

Review of appliance targets	Intensity improvement (%) 2015 - 2030	
Appliance	Moderate MEPS	Extensive MEPS
Lighting	3%	44%
Cooking - Oven	36%	63%
Fridge/Freezer	52%	61%
Deep Freeze	59%	76%
Hot Water Geyser	9%	9%
Hot Water (SWH/Heat Pump)	27%	27%
Dishwasher	31%	35%
Washing machine	39%	43%
Tumble drier	39%	59%
TV	0%	68%
Aircon	19%	21%

Key findings: Assessment of Post-2015 NEES targets

- The model results indicate that if the S&L and MEPS programmes continued in their current form, with appliance standards at the current level, they would achieve a saving of 10% in 2030 compared to the case where only moderate savings occur in the absence of these programmes. If the 2015 household baseline consumption is simply extended to 2030, the model shows a saving of 19%.
- The results indicate that without an expansion of the programme the 33% target will not be achieved.

Model Results					
Moderate MEPS					
	2020	2030	2040		
Low	6.3%	25.4%	28.2%		
Middle	6.1%	20.2%	21.3%		
High	5.7%	18.9%	22.8%		
Total	5.2%	19.3%	19.8%		
Extensive MEPS					
	2020	2030	2040		
Low	6.3%	28.4%	37.1%		
Middle	6.1%	22.7%	28.9%		
High	5.7%	20.7%	28.8%		
Total	5.2%	21.7%	27.4%		

Key recommendations

Key recommendation 1: Hot water (Resistive)

- Significant user of electricity in SA households
- Modelled consumption is extremely sensitive to assumptions: water use, thermostat temperature, incoming water temperature, etc
- Yet literature available is very sparse (only a handful of SA studies)
- A bottom-up calculation requires
 - Daily volume HW per person (all income groups)
 - Geyser thermostat temperature (middle & high income)
- Broad range of estimates for actual geyser stock in the literature
- Penetration of >1 geyser per household is not known
- VC 9006 is a major step towards reducing standing losses (D >> B)
 - Consumer education still required (Class B is broad)
- Inline water heaters require further research

For a "Class D" geyser at around 65°C, each 1°C increase in setpoint temperature causes standing losses to increase by roughly 50 Wh/day

Key recommendation 2: Hot water (Solar Water Heaters)

- Real (in-situ) SWH performance studies for SA almost non-existent
 - Previous M&V studies all modelled
- Accurate installation numbers are very sparse (mostly since 2015)
- This may be alleviated through close research partnerships with
 - Municipalities
 - RE Industry Associations
- Accelerated rollout of HP & LP SWHs (& Heat Pumps) could have substantial benefits

Key recommendation 3: VC 9008 Amendments

- Proposed VC9008 amendments roughly comparable to the Moderate MEPS Scenario
 - Given the modest savings a revision towards the Extensive MEPS should be considered
- Proposed amendments include other things
 - Refrigerant types for cold appliances
 - Water performance for washing machines & dishwashers.
 - Integrating these new aspects into S&L label will require careful label revision to avoid risk of information overload

Key recommendation 4: Lighting

- Inherently difficult technology to characterise through a questionnaire
- REC 2020 survey findings
 - Few households were using LEDs still much potential for savings
 - Revealed overwhelming agreement (79%) that the information provided on lamp packaging helps customers choose (supports move towards improved labelling to allow comparisons between type, cost and luminous efficacy)
- Longitudinal measurement study suggested across income groups
- Existing fitting designs can limit the savings that can be achieved
 - Dimmers should be investigated for energy savings

Key recommendation 5: Behavioural interventions

- Poorly implemented behavioural interventions can be worse than none at all
- Rebound effects are difficult to anticipate or quantify
- Long term national EE strategy should consider technical & behavioural interventions
- Thermal cooking interventions could meaningfully impact on low income households
- The potential for low-cost, high-impact, sustainable behavioural interventions should be further investigated (as a complement to technical interventions)

Other recommendations: Municipal data

- Only George Municipality took part
 - Promoted the survey
 - Provided kWh data
- Accurate bottom up calibration of households require real kWh
- Future surveys rolled out in close partnership with municipalities & ESKOM?

Other recommendations: Solar PV data

- PV penetration is high (and increasing)
- kWh production is unknown (user side of the meter)
- Industry associations such as AREP may assist with yield estimates

The future

Questions?

Session 2

Session 2: Research methodology

- REC 2020 Household survey
- Household calibration
- National calibration
- LEAP model development

Household survey

REC 2020 Household survey: Overview

Aim

- gather appliance ownership and utilisation data
- to improve estimates of end use electricity consumption

Three survey methods were considered

- online panels
- e-surveys conducted in partnership with municipal metros
- a small door to door survey
- final choice: online panel (2075 Responses)

Design process

Literature review, testing, ethics approval

Survey timeline 30 July to 10 October

REC 2020 Household survey: Target information per appliance / end use

Electrical loads			r	Г	1	1
End use category	Appliance	Quantity/ Ownership	Size	Туре	Usage	Age
Lighting	Lamps	X		Х	Х	
Cooking	Stove & Oven	X	х	X	X	
	Microwave	X			Х	
	Kettle	X			Х	
	Other	X		Х	X	
Food cooling	Fridges & Fridge/Freezers	X	Х		Х	Х
	Chest freezers	X	х	X	X	Х
Cleaning	Dishwasher	X			Х	Х
	Washing machine	X		Х	X	Х
	Tumble dryer	х			X	Х
Hot water	Water heater	х	х	X	X	Х
(Bathing, showering, washing)	Kettle	х			X	
Heating	Space heating	х	х	X	X	
Other appliances	Entertainment	х	х	X	X	
	Other	х	Х	Х	X	
Comfort	Air conditioning	Х		Х	Х	х
	Fans	X	x	x	x	

REC 2020 Household survey: Sample questions & assumptions

How often do you normally cook hot food in your household?

- Twice a day or more
- Once a day
- 4 6 times a week
- 2 3 times a week
- Once a week or less

Which of these best describes your MAIN cooking appliance?

- Electric stove top & electric oven (Combined unit or separate oven & hob)
- Gas stove top & electric oven (Combined unit or separate oven & hob)
- 2 or 3 plate electric stove & small oven
- 2 or 3 plate electric stove (Without oven)
- Other

REC 2020 Household survey: Sample questions & assumptions

In a normal week how many times is the OVEN used?

- Twice a day or more
- Once a day
- 4 6 times a week
- 2 3 times a week
- Once a week or less

In a normal week, how many times is the STOVE used?

- Twice a day or more
- Once a day
- 4 6 times a week
- 2 3 times a week
- Once a week or less

REC 2020 Household survey: Sample questions & assumptions

Do you have a microwave oven in your household?

- Yes
- No

What do you mainly use your microwave for?

- Heating up food and re-heating food
- Defrosting food
- Cooking meals from raw
- Heating up drinks like tea & coffee
- A bit of everything

Household calibration

Household calibration

REC 2020 Household survey: Independent variables (Lighting)

- 0

REC 2020 Household survey: Independent variables (Laundry)

kWh tables: Input data to household calibration

Annual kWh consumption estimates for refrigerators (age & size dependent)

Refrigerators (Annual kWh in 2020)	Appliance age						
Size	1 - 2 years	3 - 5 years	6 - 10 years	More than 10 years old	Not sure		
Bar Fridge (Small)	105	143	163	300	300		
Single Door (Medium)	183	249	286	525	525		
Double door (Top Freezer)	229	313	359	681	681		
Double door (Bottom Freezer)	229	313	359	681	681		
Large (Multi-door)	381	519	596	1131	1131		

Annual kWh consumption estimates for dishwashers (age & usage dependent)

Dishwashers (Annual kWh in 2020)	Appliance age						
Usage	1 - 2 years	3 - 5 years	6 - 10 years	More than 10 years old	Not sure		
Twice a day or more	594	717	784	1174	1109		
Once a day	297	359	392	587	555		
4 - 6 times a week	212	256	280	419	396		
2 - 3 times a week	106	128	140	210	198		
Once a week or less	42	51	56	84	79		

kWh tables: Input data to household calibration

Annual kWh consumption estimates for stoves (usage, occupancy & income dependent)

Stove: Middle income (Annual kWh in 2020)	Household size					
Usage	1	2	3	4	5	6
Twice a day or more	225	249	274	298	322	347
Once a day	113	125	137	149	161	173
4 - 6 times a week	80	89	98	106	115	124
2 - 3 times a week	40	45	49	53	58	62
Once a week or less	16	18	20	21	23	25

Sample data from household calibration calculations

Sample data from household calibration calculations

National calibration

National calibration comments

- National residential electricity consumption estimate (2015 TWh)
- National consumption matched bottom up estimates very closely
- National appliance penetration estimates obtained from other sources
 - AMPS, LCS, Census, Community Survey & GHS.

National calibration results

SA LEAP Model

The SA LEAP model

- LEAP developed, maintained and distributed by the Stockholm Environmental Institute (SEI)
- Widely used internationally (over 190 countries)
- Scenario based modelling tool
- User friendly modelling platform
 - Flexible scale (sectors, technologies, time)
 - Alternative methods of demand analysis
 - Emissions accounting
 - Optimisation on the supply side
- <u>https://leap.sei.org</u>

LEAP: SA LEAP 0408

LEAP SA model structure: Key Assumptions

LEAP SA model structure: Demand

Key assumptions (population, electrification & household income shares)

LEAP SA model structure: Stock model appliance ages & survival profiles

LEAP SA model: Stock of targeted appliances & sales (2015-2040)

Scenario development: kWh intensity example (Extensive MEPS, H/Inc)

Questions?

Thanks & Acknowledgements

mineral resources & energy

Department: Mineral Resources and Energy REPUBLIC OF SOUTH AFRICA

